Name:

Period:

Seat#:

Worksheet #2

Conceptual Questions						
1)	Explain the difference between heat and temperature.	2) Define specific the units for it.	heat and provide	3)	Which will heat up <u>slower></u> Explain why. Metal A – specific heat = $0.35 \frac{J}{g^{\circ}C}$ Metal B – specific heat = $0.12 \frac{J}{g^{\circ}C}$	
4)	Draw a generic graph for an endoth energy being lost or gained?	nermic reaction. Is	5) Draw a generic energy being k	s grap	ph for an exothermic reaction. Is r gained?	
6)	Define convection.	7) Define conduct	ion.	8)	Define radiation.	

Mathematical Questions

- Identify the variables involved
- Show plugging in the variables to the correct places in the equation
- Get an actual answer, including units! Box your answer!
- Don't forget you must show units and any conversions that might be involved.
- You can either rearrange your equation before you plug in your variables, or after. Do what works for you!
- Some answers are provided at the end. They are underlined.

 Find the amount of heat (Q) needed to raise the temperature of 5.00 g of a substance from 20.0°C to 30.0 C if the specific heat of the substance is 2.01 J/g°C. <u>100.5 J</u> 	 10) A metal with a specific heat of 0.780 J/g°C requires 45.0 J of heat to raise the temperature by 2.00°C. What is the mass of the metal? <u>28.8 g</u>
$\frac{\text{Variables}}{\text{Q} = ?}$ m = 5.00 g C = 2.01 J/g C Δ T = 10 C	

11) A metal with a specific heat of 0.70 J/g°C and a mass of 8.00 g absorbs 48.0 J of heat. What will be the temperature change of the metal? <u>8.57°C</u>	12) What is the specific heat of a substance that absorbs 2.5 x 10^3 joules of heat when a sample of 1.0×10^4 g of the substance increases in temperature from 10.0° C to 70.0° C? <u>$C = 0.0042 \text{ J/g}^{\circ}$C</u>
The table below shows the specific heats for some common substances. Use this table for the following questions. Substances Specific Heat (J/g°C) Aluminum 0.90 Copper 0.38 Gold 0.13 Ice 2.09 Iron 0.450 Lead 0.130 Steam 1.87 Water 4.18	 13) How much heat (Q) is needed to raise the temperature of 8.00 g of lead by 10.0°C? <u>10.4 J</u>
 14) The temperature of a 250.0 g ball of Iron increases from 19.0°C to 32.0°C. How much heat did the iron ball gain? <u>1462.5 J</u> 	15) The temperature of a 100.0-g block of ice increases by 3.00°C. How much heat does the ice receive? 627 J
16) Ten grams of steam absorbs 60.0 J of heat. What is the temperature increase of the steam? <u>3.2°C</u>	17) A piece of lead loses 78.0 J of heat and experiences a decrease in temperature of 9.0°C. What is the mass of the piece of lead? <u>66.7 g</u>